Automata minimization

a lightweight categorical approach

Thomas Colcombet and Daniela Petrisan
CNRS & IRIF, Paris 7
OPCT 2017, Vienna, 29 July 2017

I |° I l: INSTITUT
DE RECHERCHE
EN INFORMATIQUE
FONDAMENTALE

Overview

Motivation: hybrid set-vector automata

Byproduct: a lightweight category-theoretic approach
Automata are functors! Minimization in this setting.
Examples

Open problems!

2/31

Motivation

Automata for weighted languages

Once upon a time weighted automata were introduced by

[3 [M.-P. Schiitzenberger, 1961]
On the definition of a family of automata

A minimization algorithm is also provided.

3/31

Vector automata

An vector automaton is a tuple

A= <Q qo0, f, ((Sa)a’%A>

Q is an R-vector space

e g is an initial vector in Q@

f: @ — R associates to each state an output value

for each ac A, 6,: Q - Q is a linear map

The language accepted by A is a map L4: A* — R defined by

weA" = f(0w(qo))

4/31

Weighted languages: an example

Consider the alphabet A = {a, b, c} and the language L: A" — R

2luls i 14|, is even and |ul. =0,
e || ule

0 otherwise
An automaton accepting this language is

(R?,(1,0),f,(02)en)

5/31

Weighted languages: an example

L) - {QUa if |uls even & |ulc =0,

0 otherwise

<R2= (1= O)v f, ((Sa)aeA>
da(x,y) = (2x,2y)
Op(x,y) = (¥, x)
dc(x,y) =(0,0)
f(x,y)=x

6/31

Weighted languages: an example

L) - {QUa if |uls even & |ulc =0,

0 otherwise

<R2= (1= O)v f, ((Sa)aeA>
da(x,y) = (2x,2y)
Op(x,y) = (¥, x)
dc(x,y) =(0,0)
f(x,y)=x

a

6/31

Weighted languages: an example

L) - {QUa if |uls even & |ulc =0,

0 otherwise

<R2= (1= O)v f, ((Sa)aeA>
da(x,y) = (2x,2y)
Op(x,y) = (¥, x)
dc(x,y) =(0,0)
f(x,y)=x

ab

6/31

Weighted languages: an example

L) - {QUa if |uls even & |ulc =0,

0 otherwise

<R2= (1= O)v f, ((Sa)aeA>
da(x,y) = (2x,2y)
Op(x,y) = (¥, x)
dc(x,y) =(0,0)
f(x,y)=x

abb

6/31

Weighted languages: an example

L) - {QUa if |uls even & |ulc =0,

0 otherwise

<R2= (1= O)v f, ((Sa)aeA>
da(x,y) = (2x,2y)
Op(x,y) = (¥, x)
dc(x,y) =(0,0)
f(x,y)=x

abba

6/31

Weighted languages: an example

L) - {QUa if |uls even & |ulc =0,

0 otherwise

<R2= (1= O)v f, ((Sa)aeA>
da(x,y) = (2x,2y)
Op(x,y) = (¥, x)
dc(x,y) =(0,0)
f(x,y)=x

abbaa

6/31

Weighted languages: an example

L) - {QUa if |uls even & |ulc =0,

0 otherwise

<R2= (1= O)v f, ((Sa)aeA>
da(x,y) = (2x,2y)
Op(x,y) = (¥, x)
dc(x,y) =(0,0)
f(x,y)=x

abbaa— 8

6/31

Weighted languages: an example

L) - {QUa if |uls even & |ulc =0,

0 otherwise

<R2= (1= O)v f, ((Sa)aeA>
da(x,y) = (2x,2y)
Op(x,y) = (¥, x)
dc(x,y) =(0,0)
f(x,y)=x

abbaac — 0

o—
bed
e
&

6/31

Weighted languages: an example

The “reachable” vectors are on the “union” of
two one-dimensional subspaces.

7/31

Weighted languages: an example

The “reachable” vectors are on the “union” of
two one-dimensional subspaces.

7/31

The starting point

Hybrid set-vector automata “have”

e a finite set of control states that evolve like DFAs

e a finite vector space for each control state

Question.
What is a suitable automata model so that minimisation is possible
and we retrieve this “hybrid” behaviour?

8/31

Automata as functors

Automata in Categories: what we already knew

Automata are both
algebras for a functor + final map
and
coalgebras for a functor + initial map

9/31

Automata in Categories: what we already knew

Automata are both
algebras for a functor + final map
and
coalgebras for a functor + initial map

Minimization can be explained via
the duality between the algebraic-coalgebraic view
(e.g. Brzozowski's algorithm)

9/31

Automata in Categories: what we already knew

Automata are both
algebras for a functor + final map
and
coalgebras for a functor + initial map

Minimization can be explained via
the duality between the algebraic-coalgebraic view
(e.g. Brzozowski's algorithm)

The coalgebraic view brings its own advantages:
(e.g. checking NFA equivalences using
up-to techniques for bisimulations)

9/31

Thomas Colcombet
“Algebres? Co-algébres?
Mais ils ne sont ni I'un ni I'autre!”

An automaton processes an input,
respecting its structure (word, tree,
infinite word or tree, trace, ...)
outputs a quantity in some
universe of output values

(Boolean values, probabilities,
vector space, words, ...)

10/31

Thomas Colcombet
“Algebres? Co-algébres?
Mais ils ne sont ni I'un ni I'autre!”

An automaton processes an input,
respecting its structure (word, tree,
infinite word or tree, trace, ...)
outputs a quantity in some
universe of output values
(Boolean values, probabilities,
vector space, words, ...)

Automata are functors!!!

10/31

Word automata

deterministic automata

non-deterministic automata

weighted automata

Subseq. transducers

Lo Loe |
Jeldrelel)

|
!

in Set

in Rel

in Mods

in KI(T)

11/31

Word automata

deterministic automata

non-deterministic automata

weighted automata

Subseq. transducers

We see a pattern emerging!

Lo Loe |
Jeldrelel)

|
!

in Set

in Rel

in Mods

in KI(T)

11/31

Word automata are
AT -C,

where the category 7 is freely generated by

a

n

o > <
In ——»> states ——> out

Word automata are
AT - C,

where the category 7 is freely generated by

a

¢)

. > <
In ——> states ——> out

deterministic automata and

Word automata are
AT -C,

where the category 7 is freely generated by

a

¢)

in —l>> states L> out

deterministic automata and

non-deterministic automata and

Word automata are functors
AT - C,

where the input category 7 is freely generated by

a

-

in —D> states i) out

deterministic automata A: T — Set in— 1 and out — 2
non-deterministic automata A: 7T — Rel in—1and out—1
weighted automata A:Z - Mods in—Sandout— S

12/31

Word automata are functors
AT - C,

where the input category 7 is freely generated by

a

-

in —D> states i) out

deterministic automata A: T — Set in — 1 and out 2
non-deterministic automata A:Z — Rel in— 1 and out 1
weighted automata A:Z > Mods in—Sandout— S
subseq. transducers AT - KI(T) in—1andout—1

12/31

Languages are functors
L:0-C,

where O is the full subcategory of Z on objects in and out

. Dw<d : weA*
In —— > out

13/31

Languages are functors
L:0-C,

where O is the full subcategory of Z on objects in and out

. Dw<d : weA*
In —— > out

A language L ¢ A" can be modelled as a functor
Lser: O — Set so that Lsei(in) =1 and Lse(out) = 2,
For all w e A" we have Lge(>w<1):1— 2 in Set.

13/31

Languages are functors
L:0-C,

where O is the full subcategory of Z on objects in and out

. Dw<d : weA*
In —— > out

A language L ¢ A" can be modelled as a functor
Lser: O — Set so that Lsei(in) =1 and Lse(out) = 2,
For all w e A" we have Lge(>w<1):1— 2 in Set.

Alternatively, L ¢ A* can be modelled as a functor
LRei: O — Rel so that ERe|(in) =1 and ERe|(out) =1.
For all w € A" we have Lgei(>w<):1 -1 in Rel.

13/31

Accepting a language (the functor version)

An automaton A accepts a language £ when the next diagram commutes

. Dw<d : weA* , S

in we s we > out O C
a

. > O N .

in ——> states —— out Zz

14 /31

Accepting a language (the functor version)

An automaton A accepts a language £ when the next diagram commutes

. Dw<d : weA* , S

in we s we > out O C
a

. > O N .

in ——> states —— out Zz

For every language £:O — C we have a category Auto; of automata
accepting L.

14 /31

Automata as functors:

minimization

Minimial Automaton Min(£) for a Language

When does a ‘minimal’ automaton accepting a language L exist?

(@) C

15/31

Minimial Automaton Min(£) for a Language

When does a ‘minimal’ automaton accepting a language L exist?

(@) C

z
If the category of automata accepting £ has

e an initial object Ajnit (L),

15/31

Minimial Automaton Min(£) for a Language

When does a ‘minimal’ automaton accepting a language L exist?

(@) C

z
If the category of automata accepting £ has

e an initial object Aipnit (L),
e a final object Asina1(£), and,

15/31

Minimial Automaton Min(£) for a Language

When does a ‘minimal’ automaton accepting a language L exist?

@ C

z
If the category of automata accepting £ has

e an initial object Aipnit (L),
e a final object Asina1(£), and,
e a factorization system

then Min(L) is obtained as the factorization

Ainit (L) » Min(L) » Asina1(L) .
15/31

Trivial example

deterministic automata, i.e. (Set,1,2)-automata
accepting a (Set, 1,2)-language

A>(-
€ L?
reachedState
1 ’ > Q f > 2
acceptedLanguage
ﬁ ' a?
2A

16 /31

Trivial example

deterministic automata, i.e. (Set,1,2)-automata
accepting a (Set, 1,2)-language

A>(-

16 /31

Minimization via epi-mono factorisations

If the output category C has countable powers and copowers, and,
and epi-mono factorisation system, then the minimial automaton for L is
computed as follows

111

ueA*

ueA*

17/31

Thus far we have reinvented the wheel ...

18/31

Thus far we have reinvented the wheel ...

However, the wheel was a pretty awesome invention!

18/31

What if the output category is not
nice?

Two applications

Subsequential transducers

the output category has copowers, factorization system, but does not
have products.

19/31

Two applications

Subsequential transducers

the output category has copowers, factorization system, but does not
have products.

Hybrid set-vector automata

a costum-made output category that has all powers and copowers, but
where the factorisation system is not “nice” enough to give a meaningful
notion of minimization.

19/31

Subsequential transducers a la
Choffrut

Minimization of subsequential transducers a la Choffrut

1
k ba

|b
alab albab

bab (1 3) @D blb
alabb

20/31

Minimization of subsequential transducers a la Choffrut

1
k ba

|b
alab albab

bab (1 3) @D blb
alabb

20/31

Minimization of subsequential transducers a la Choffrut

\\}

|b
alab alb

bab (1 3) @D blb
alabb

20/31

Minimization of subsequential transducers a la Choffrut

\\}

|b
alab alb

bab (1 3) @D blb
alabb

20/31

Minimization of subsequential transducers a la Choffrut

\\}

|b
alab alb

bab(T 3) @D blb
alabb

20/31

Minimization of subsequential transducers a la Choffrut

\\}

|b
alb alb

b|ba 3) @D blb
alabba

20/31

Minimization of subsequential transducers a la Choffrut

\\}

|b
alb alb

b|ba 3) \DD blb
alabba

20/31

Minimization of subsequential transducers a la Choffrut

21/31

Subsequential transducers as functors

A subsequential transducers with output alphabet B is essentially a
functor

A:Z - KI(T)
for the monad 7:Set — Set defined by

T(X)=B*xX+1.

That is, we have the data

a

)

1— Q ——1 in KI(T)

22/31

Subsequential transducers as functors

A subsequential transducers with output alphabet B is essentially a
functor

A:Z - KI(T)
for the monad 7:Set — Set defined by
T(X)=B*xX+1.

That is, we have the data

a

)

1— Q ——1 in KI(T)

The category KI(T") does not have powers or products!!
This is why we cannot just use coalgebras for
SX = (1+B* x X)*" x (1+ B*), see [Hansen, 2010]
22/31

“Glueings” of vector spaces

Let’s backtrack to the “hybrid set-vector’ automaton

The “reachable” vectors are on the “union” of
two one-dimensional subspaces.

23/31

What is the good category to accommodate the new model?

An example of “gluings” of vector spaces
i.e. a mono-colimit in Vec

N
e

&
&

B —
B —

24 /31

The category Glue(C)

A diagram F:D — C is called a mono-colimit if it has a mono-cocone in
C, that is, a cocone where all the injections are monos.

Definition

We define Glue(C) as the free completion of C under mono-colimits.

25 /31

The category Glue(C)

A diagram F:D — C is called a mono-colimit if it has a mono-cocone in
C, that is, a cocone where all the injections are monos.

Definition
We define Glue(C) as the free completion of C under mono-colimits.

Lemma

The category Glue(C) is complete and cocomplete whenever C is.

In particular, Glue(Vec) has all the required properties so that
minimisation works smoothly.

25 /31

Still, there is a catch ...

We are interested in effective minimal automatal

deterministic finite automata Set,
finite-dim. vector automata Vecsn,
effective hybrid-set-vector automata Glueg, (Vecsin)

where Gluegi, (Vecsiy) is the free cocompletion of Vecg, under finite
mono-colimits.

26 /31

Consider the weighted language L: A* — R given by
L(u) = cos(a|ul)
for some a which is not a rational multiple of 7.

The minimal automaton in Glue(Vec) is a countable colimit of
one-dimensional spaces.

27/31

It seems we have “broken” the minimisation wheel ...

28 /31

It seems we have “broken” the minimisation wheel ...

The fix: a factorisation through system

28 /31

Conclusions

Conclusions

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of
the hybrid set-vector automata model.

29/31

Conclusions

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of
the hybrid set-vector automata model.

Quite a few questions remain to be answered...

Can we characterise the presheaves that are mono-colimits of
representables? (some partial results, e.g. we proved that they preserve
equalisers, but that is not sufficient)

29/31

Conclusions

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of
the hybrid set-vector automata model.

Quite a few questions remain to be answered...

Can we characterise the presheaves that are mono-colimits of
representables? (some partial results, e.g. we proved that they preserve
equalisers, but that is not sufficient)

How do we effectively minimise hybrid-set-vector automata?

29/31

Conclusions

Adjunctions between output categories lift to adjunctions for “adjoint
transpose” languages. Unifying explanation for

e determinization of NFAs

e generalised powerset construction

e reversing automata
What other uses can we find for the “minimization wheel”?
e syntactic monoids, algebras

e minimization by duality

e syntactic spaces with internal monoids
[Gehrke, P., Reggio, ICALP’16, LICS'17]

e minimization of subsequential transducers (a la Choffrut)

30/31

References

[[Colcombet, P., ACM SIGLOG april 2017]
Automata and minimization.

[§ [Colcombet, P., MFCS 2017]
Automata in the Category of Glued Vector Spaces

E [Colcombet, P., CALCO 2017]
Automata Minimization: a Functorial Approach

31/31

	Overview
	Motivation
	Automata as functors
	Automata as functors: minimization
	What if the output category is not nice?
	Subsequential transducers à la Choffrut
	``Glueings'' of vector spaces
	Conclusions

