
Automata minimization

a lightweight categorical approach

Thomas Colcombet and Daniela Petri³an

CNRS & IRIF, Paris 7

OPCT 2017, Vienna, 29 July 2017



Overview



� Motivation: hybrid set-vector automata

� Byproduct: a lightweight category-theoretic approach

� Automata are functors! Minimization in this setting.

� Examples

� Open problems!

2 / 31



Motivation



Automata for weighted languages

Once upon a time weighted automata were introduced by

[M.-P. Schützenberger, 1961]

On the de�nition of a family of automata

A minimization algorithm is also provided.

3 / 31



Vector automata

An vector automaton is a tuple

A = ⟨Q,q0, f , (δa)a∈A⟩

� Q is an R-vector space

� q0 is an initial vector in Q

� f ∶Q → R associates to each state an output value

� for each a ∈ A, δa∶Q → Q is a linear map

The language accepted by A is a map LA∶A∗ → R de�ned by

w ∈ A∗ ↦ f (δw(q0))

4 / 31



Weighted languages: an example

Consider the alphabet A = {a,b, c} and the language L∶A∗ → R

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b is even and ∣u∣c = 0,

0 otherwise

An automaton accepting this language is

⟨R2, (1,0), f , (δa)a∈A⟩

5 / 31



Weighted languages: an example

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b even & ∣u∣c = 0,

0 otherwise

⟨R2, (1,0), f , (δa)a∈A⟩
δa(x , y) = (2x ,2y)
δb(x , y) = (y , x)
δc(x , y) = (0,0)
f (x , y) = x

abbaa

6 / 31



Weighted languages: an example

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b even & ∣u∣c = 0,

0 otherwise

⟨R2, (1,0), f , (δa)a∈A⟩
δa(x , y) = (2x ,2y)
δb(x , y) = (y , x)
δc(x , y) = (0,0)
f (x , y) = x

a

bbaa

6 / 31



Weighted languages: an example

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b even & ∣u∣c = 0,

0 otherwise

⟨R2, (1,0), f , (δa)a∈A⟩
δa(x , y) = (2x ,2y)
δb(x , y) = (y , x)
δc(x , y) = (0,0)
f (x , y) = x

ab

baa

6 / 31



Weighted languages: an example

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b even & ∣u∣c = 0,

0 otherwise

⟨R2, (1,0), f , (δa)a∈A⟩
δa(x , y) = (2x ,2y)
δb(x , y) = (y , x)
δc(x , y) = (0,0)
f (x , y) = x

abb

aa

6 / 31



Weighted languages: an example

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b even & ∣u∣c = 0,

0 otherwise

⟨R2, (1,0), f , (δa)a∈A⟩
δa(x , y) = (2x ,2y)
δb(x , y) = (y , x)
δc(x , y) = (0,0)
f (x , y) = x

abba

a

6 / 31



Weighted languages: an example

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b even & ∣u∣c = 0,

0 otherwise

⟨R2, (1,0), f , (δa)a∈A⟩
δa(x , y) = (2x ,2y)
δb(x , y) = (y , x)
δc(x , y) = (0,0)
f (x , y) = x

abbaa

6 / 31



Weighted languages: an example

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b even & ∣u∣c = 0,

0 otherwise

⟨R2, (1,0), f , (δa)a∈A⟩
δa(x , y) = (2x ,2y)
δb(x , y) = (y , x)
δc(x , y) = (0,0)
f (x , y) = x

abbaa ↦ 8

6 / 31



Weighted languages: an example

L(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∣u∣a if ∣u∣b even & ∣u∣c = 0,

0 otherwise

⟨R2, (1,0), f , (δa)a∈A⟩
δa(x , y) = (2x ,2y)
δb(x , y) = (y , x)
δc(x , y) = (0,0)
f (x , y) = x

abbaac ↦ 0

6 / 31



Weighted languages: an example

The �reachable� vectors are on the �union� of

two one-dimensional subspaces.

maintaining one

bit and one real

is better than

two reals

7 / 31



Weighted languages: an example

The �reachable� vectors are on the �union� of

two one-dimensional subspaces.

maintaining one

bit and one real

is better than

two reals

7 / 31



The starting point

Hybrid set-vector automata �have�

� a �nite set of control states that evolve like DFAs

� a �nite vector space for each control state

Question.

What is a suitable automata model so that minimisation is possible

and we retrieve this �hybrid� behaviour?

8 / 31



Automata as functors



Automata in Categories: what we already knew

Automata are both

algebras for a functor + �nal map

and

coalgebras for a functor + initial map

Minimization can be explained via

the duality between the algebraic-coalgebraic view

(e.g. Brzozowski's algorithm)

The coalgebraic view brings its own advantages:

(e.g. checking NFA equivalences using

up-to techniques for bisimulations)

9 / 31



Automata in Categories: what we already knew

Automata are both

algebras for a functor + �nal map

and

coalgebras for a functor + initial map

Minimization can be explained via

the duality between the algebraic-coalgebraic view

(e.g. Brzozowski's algorithm)

The coalgebraic view brings its own advantages:

(e.g. checking NFA equivalences using

up-to techniques for bisimulations)

9 / 31



Automata in Categories: what we already knew

Automata are both

algebras for a functor + �nal map

and

coalgebras for a functor + initial map

Minimization can be explained via

the duality between the algebraic-coalgebraic view

(e.g. Brzozowski's algorithm)

The coalgebraic view brings its own advantages:

(e.g. checking NFA equivalences using

up-to techniques for bisimulations)

9 / 31



Thomas Colcombet

�Algèbres? Co-algèbres?

Mais ils ne sont ni l'un ni l'autre !�

An automaton processes an input,

respecting its structure (word, tree,

in�nite word or tree, trace, . . . )

outputs a quantity in some

universe of output values

(Boolean values, probabilities,

vector space, words, . . . )

Automata are functors!!!

10 / 31



Thomas Colcombet

�Algèbres? Co-algèbres?

Mais ils ne sont ni l'un ni l'autre !�

An automaton processes an input,

respecting its structure (word, tree,

in�nite word or tree, trace, . . . )

outputs a quantity in some

universe of output values

(Boolean values, probabilities,

vector space, words, . . . )

Automata are functors!!!

10 / 31



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata S Q S in ModS

Subseq. transducers 1 Q 1 in Kl(T )

a

a

a

a

We see a pattern emerging!

11 / 31



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata S Q S in ModS

Subseq. transducers 1 Q 1 in Kl(T )

a

a

a

a

We see a pattern emerging!
11 / 31



Word automata are functors

A∶I → C ,

where the input category I is freely generated by

in states out
▷

a

◁

12 / 31



Word automata are functors

A∶I → C ,

where the input category I is freely generated by

in states out
▷

a

◁

deterministic automata A∶I → Set in↦ 1 and out↦ 2

12 / 31



Word automata are functors

A∶I → C ,

where the input category I is freely generated by

in states out
▷

a

◁

deterministic automata A∶I → Set in↦ 1 and out↦ 2

non-deterministic automata A∶I → Rel in↦ 1 and out↦ 1

12 / 31



Word automata are functors

A∶I → C ,

where the input category I is freely generated by

in states out
▷

a

◁

deterministic automata A∶I → Set in↦ 1 and out↦ 2

non-deterministic automata A∶I → Rel in↦ 1 and out↦ 1

weighted automata A∶I →ModS in↦ S and out↦ S

12 / 31



Word automata are functors

A∶I → C ,

where the input category I is freely generated by

in states out
▷

a

◁

deterministic automata A∶I → Set in↦ 1 and out↦ 2

non-deterministic automata A∶I → Rel in↦ 1 and out↦ 1

weighted automata A∶I →ModS in↦ S and out↦ S

subseq. transducers A∶I → Kl(T ) in↦ 1 and out↦ 1

12 / 31



Languages are functors

L∶O → C ,

where O is the full subcategory of I on objects in and out

in out
▷w◁ ∶ w∈A∗

A language L ⊆ A∗ can be modelled as a functor

LSet∶O → Set so that LSet(in) = 1 and LSet(out) = 2,

For all w ∈ A∗ we have LSet(▷w◁)∶1→ 2 in Set.

Alternatively, L ⊆ A∗ can be modelled as a functor

LRel∶O → Rel so that LRel(in) = 1 and LRel(out) = 1.

For all w ∈ A∗ we have LRel(▷w◁)∶1→ 1 in Rel.

13 / 31



Languages are functors

L∶O → C ,

where O is the full subcategory of I on objects in and out

in out
▷w◁ ∶ w∈A∗

A language L ⊆ A∗ can be modelled as a functor

LSet∶O → Set so that LSet(in) = 1 and LSet(out) = 2,

For all w ∈ A∗ we have LSet(▷w◁)∶1→ 2 in Set.

Alternatively, L ⊆ A∗ can be modelled as a functor

LRel∶O → Rel so that LRel(in) = 1 and LRel(out) = 1.

For all w ∈ A∗ we have LRel(▷w◁)∶1→ 1 in Rel.

13 / 31



Languages are functors

L∶O → C ,

where O is the full subcategory of I on objects in and out

in out
▷w◁ ∶ w∈A∗

A language L ⊆ A∗ can be modelled as a functor

LSet∶O → Set so that LSet(in) = 1 and LSet(out) = 2,

For all w ∈ A∗ we have LSet(▷w◁)∶1→ 2 in Set.

Alternatively, L ⊆ A∗ can be modelled as a functor

LRel∶O → Rel so that LRel(in) = 1 and LRel(out) = 1.

For all w ∈ A∗ we have LRel(▷w◁)∶1→ 1 in Rel.

13 / 31



Accepting a language (the functor version)

An automaton A accepts a language L when the next diagram commutes

in out O C

in states out I

▷w◁ ∶ w∈A∗ L

▷

a

◁

A

For every language L∶O → C we have a category AutoL of automata

accepting L.

14 / 31



Accepting a language (the functor version)

An automaton A accepts a language L when the next diagram commutes

in out O C

in states out I

▷w◁ ∶ w∈A∗ L

▷

a

◁

A

For every language L∶O → C we have a category AutoL of automata

accepting L.

14 / 31



Automata as functors:

minimization



Minimial Automaton Min(L) for a Language

When does a `minimal' automaton accepting a language L exist?

O C

I

L

Min(L)?Min(L)
Ainit(L)

Afinal(L)

If the category of automata accepting L has

� an initial object Ainit(L),
� a �nal object Afinal(L), and,
� a factorization system

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .

15 / 31



Minimial Automaton Min(L) for a Language

When does a `minimal' automaton accepting a language L exist?

O C

I

L

Min(L)?Min(L)
Ainit(L)

Afinal(L)

If the category of automata accepting L has

� an initial object Ainit(L),

� a �nal object Afinal(L), and,
� a factorization system

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .

15 / 31



Minimial Automaton Min(L) for a Language

When does a `minimal' automaton accepting a language L exist?

O C

I

L

Min(L)?Min(L)
Ainit(L)

Afinal(L)

If the category of automata accepting L has

� an initial object Ainit(L),
� a �nal object Afinal(L), and,

� a factorization system

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .

15 / 31



Minimial Automaton Min(L) for a Language

When does a `minimal' automaton accepting a language L exist?

O C

I

L

Min(L)?Min(L)
Ainit(L)

Afinal(L)

If the category of automata accepting L has

� an initial object Ainit(L),
� a �nal object Afinal(L), and,
� a factorization system

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .
15 / 31



Trivial example

deterministic automata, i.e. (Set,1,2)-automata

accepting a (Set,1,2)-language

A∗

1 Q 2

2A
∗

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

16 / 31



Trivial example

deterministic automata, i.e. (Set,1,2)-automata

accepting a (Set,1,2)-language

A∗

1 Min(L) 2

2A
∗

L?
reachedState

L

ε

i f

acceptedLanguage

ε?

16 / 31



Minimization via epi-mono factorisations

If the output category C has countable powers and copowers, and,

and epi-mono factorisation system, then the minimial automaton for L is

computed as follows

∐
u∈A∗

I

I Min(L) F

∏
u∈A∗

F

L?

L

ε

i f

ε?

17 / 31



Thus far we have reinvented the wheel ...

However, the wheel was a pretty awesome invention!

18 / 31



Thus far we have reinvented the wheel ...

However, the wheel was a pretty awesome invention!

18 / 31



What if the output category is not

nice?



Two applications

Subsequential transducers

the output category has copowers, factorization system, but does not

have products.

Hybrid set-vector automata

a costum-made output category that has all powers and copowers, but

where the factorisation system is not �nice� enough to give a meaningful

notion of minimization.

19 / 31



Two applications

Subsequential transducers

the output category has copowers, factorization system, but does not

have products.

Hybrid set-vector automata

a costum-made output category that has all powers and copowers, but

where the factorisation system is not �nice� enough to give a meaningful

notion of minimization.

19 / 31



Subsequential transducers à la

Cho�rut



Minimization of subsequential transducers à la Cho�rut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

20 / 31



Minimization of subsequential transducers à la Cho�rut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

20 / 31



Minimization of subsequential transducers à la Cho�rut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

20 / 31



Minimization of subsequential transducers à la Cho�rut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

20 / 31



Minimization of subsequential transducers à la Cho�rut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

20 / 31



Minimization of subsequential transducers à la Cho�rut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

20 / 31



Minimization of subsequential transducers à la Cho�rut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

20 / 31



Minimization of subsequential transducers à la Cho�rut

0 1

23

0′ 1′ε

ε

a

ε

ba

a∣ab
a∣abba

a∣bab
a∣b

a∣abb

a∣ab
b∣b

b∣ba

b∣b

b∣b

b∣ab

b∣ba

21 / 31



Subsequential transducers as functors

A subsequential transducers with output alphabet B is essentially a

functor

A∶I → Kl(T )

for the monad T ∶Set→ Set de�ned by

T (X ) = B∗ ×X + 1 .

That is, we have the data

1 Q 1 in Kl(T )

a

The category Kl(T ) does not have powers or products!!

This is why we cannot just use coalgebras for

SX = (1 +B∗ ×X )A∗ × (1 +B∗), see [Hansen, 2010]

22 / 31



Subsequential transducers as functors

A subsequential transducers with output alphabet B is essentially a

functor

A∶I → Kl(T )

for the monad T ∶Set→ Set de�ned by

T (X ) = B∗ ×X + 1 .

That is, we have the data

1 Q 1 in Kl(T )

a

The category Kl(T ) does not have powers or products!!

This is why we cannot just use coalgebras for

SX = (1 +B∗ ×X )A∗ × (1 +B∗), see [Hansen, 2010]
22 / 31



�Glueings� of vector spaces



Let's backtrack to the �hybrid set-vector� automaton

The �reachable� vectors are on the �union� of

two one-dimensional subspaces.

maintaining one

bit and one real

is better than

two reals

23 / 31



What is the good category to accommodate the new model?

An example of �gluings� of vector spaces

i.e. a mono-colimit in Vec

p

q

r

R2 R2 R2

R R R
24 / 31



The category Glue(C)

A diagram F ∶D → C is called a mono-colimit if it has a mono-cocone in

C, that is, a cocone where all the injections are monos.

De�nition

We de�ne Glue(C) as the free completion of C under mono-colimits.

Lemma

The category Glue(C) is complete and cocomplete whenever C is.

In particular, Glue(Vec) has all the required properties so that

minimisation works smoothly.

25 / 31



The category Glue(C)

A diagram F ∶D → C is called a mono-colimit if it has a mono-cocone in

C, that is, a cocone where all the injections are monos.

De�nition

We de�ne Glue(C) as the free completion of C under mono-colimits.

Lemma

The category Glue(C) is complete and cocomplete whenever C is.

In particular, Glue(Vec) has all the required properties so that

minimisation works smoothly.

25 / 31



Still, there is a catch ...

We are interested in e�ective minimal automata!

deterministic �nite automata Set�n
�nite-dim. vector automata Vec�n
e�ective hybrid-set-vector automata Glue�n(Vec�n)

where Glue�n(Vec�n) is the free cocompletion of Vec�n under �nite

mono-colimits.

26 / 31



Example

Consider the weighted language L∶A∗ → R given by

L(u) = cos(α∣u∣)

for some α which is not a rational multiple of π.

The minimal automaton in Glue(Vec) is a countable colimit of

one-dimensional spaces.

α
α

α

27 / 31



It seems we have �broken� the minimisation wheel ...

The �x: a factorisation through system

28 / 31



It seems we have �broken� the minimisation wheel ...

The �x: a factorisation through system

28 / 31



Conclusions



Conclusions

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of

the hybrid set-vector automata model.

Quite a few questions remain to be answered...

Can we characterise the presheaves that are mono-colimits of

representables? (some partial results, e.g. we proved that they preserve

equalisers, but that is not su�cient)

How do we e�ectively minimise hybrid-set-vector automata?

29 / 31



Conclusions

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of

the hybrid set-vector automata model.

Quite a few questions remain to be answered...

Can we characterise the presheaves that are mono-colimits of

representables? (some partial results, e.g. we proved that they preserve

equalisers, but that is not su�cient)

How do we e�ectively minimise hybrid-set-vector automata?

29 / 31



Conclusions

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of

the hybrid set-vector automata model.

Quite a few questions remain to be answered...

Can we characterise the presheaves that are mono-colimits of

representables? (some partial results, e.g. we proved that they preserve

equalisers, but that is not su�cient)

How do we e�ectively minimise hybrid-set-vector automata?

29 / 31



Conclusions

Adjunctions between output categories lift to adjunctions for �adjoint

transpose� languages. Unifying explanation for

� determinization of NFAs

� generalised powerset construction

� reversing automata

What other uses can we �nd for the �minimization wheel�?

� syntactic monoids, algebras

� minimization by duality

� syntactic spaces with internal monoids

[Gehrke, P., Reggio, ICALP'16, LICS'17]

� minimization of subsequential transducers (à la Cho�rut)

30 / 31



References

[Colcombet, P., ACM SIGLOG april 2017]

Automata and minimization.

[Colcombet, P., MFCS 2017]

Automata in the Category of Glued Vector Spaces

[Colcombet, P., CALCO 2017]

Automata Minimization: a Functorial Approach

31 / 31


	Overview
	Motivation
	Automata as functors
	Automata as functors: minimization
	What if the output category is not nice?
	Subsequential transducers à la Choffrut
	``Glueings'' of vector spaces
	Conclusions

