Automata minimization

a lightweight categorical approach

Thomas Colcombet and **Daniela Petrișan** CNRS & IRIF, Paris 7 OPCT 2017, Vienna, 29 July 2017

Overview

- Motivation: hybrid set-vector automata
- Byproduct: a lightweight category-theoretic approach
- Automata are functors! Minimization in this setting.
- Examples
- Open problems!

Motivation

Once upon a time weighted automata were introduced by

- [M.-P. Schützenberger, 1961]
 On the definition of a family of automata
- A minimization algorithm is also provided.

An vector automaton is a tuple

 $\mathcal{A} = \langle Q, q_0, f, (\delta_a)_{a \in A} \rangle$

- Q is an \mathbb{R} -vector space
- q_0 is an initial vector in Q
- $f: Q \rightarrow \mathbb{R}$ associates to each state an output value
- for each $a \in A$, $\delta_a: Q \to Q$ is a linear map

The language accepted by \mathcal{A} is a map $L_{\mathcal{A}}: \mathcal{A}^* \to \mathbb{R}$ defined by

$$w \in A^* \mapsto f(\delta_w(q_0))$$

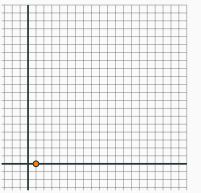
Consider the alphabet $A = \{a, b, c\}$ and the language $L: A^* \to \mathbb{R}$

$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ is even and } |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$

An automaton accepting this language is

 $\langle \mathbb{R}^2, (1,0), f, (\delta_a)_{a \in A} \rangle$

$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ even } \& |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$



$$\langle \mathbb{R}^2, (1,0), f, (\delta_a)_{a \in A} \rangle$$

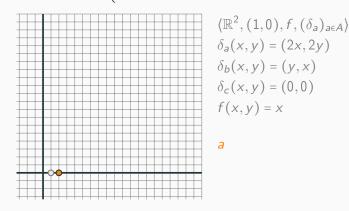
$$\delta_a(x,y) = (2x,2y)$$

$$\delta_b(x,y) = (y,x)$$

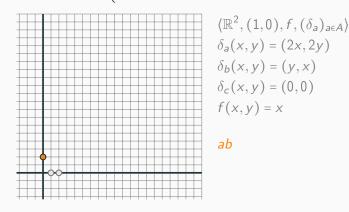
$$\delta_c(x,y) = (0,0)$$

$$f(x,y) = x$$

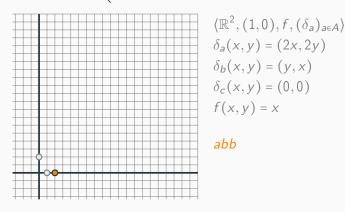
$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ even } \& |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$



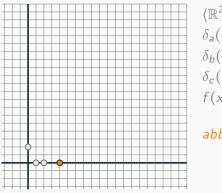
$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ even } \& |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$



$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ even } \& |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$



$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ even } \& |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$



$$\langle \mathbb{R}^2, (1,0), f, (\delta_a)_{a \in A} \rangle$$

$$\delta_a(x, y) = (2x, 2y)$$

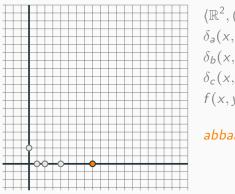
$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

$$f(x, y) = x$$

abba

$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ even } \& |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$



$$\langle \mathbb{R}^2, (1,0), f, (\delta_a)_{a \in A} \rangle$$

$$\delta_a(x, y) = (2x, 2y)$$

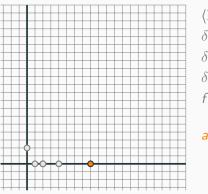
$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

$$f(x, y) = x$$

abbaa

$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ even } \& |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$



$$\langle \mathbb{R}^2, (1,0), f, (\delta_a)_{a \in A} \rangle$$

$$\delta_a(x, y) = (2x, 2y)$$

$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

$$f(x, y) = x$$

abbaa → 8

$$L(u) = \begin{cases} 2^{|u|_a} & \text{if } |u|_b \text{ even } \& |u|_c = 0, \\ 0 & \text{otherwise} \end{cases}$$



$$\langle \mathbb{R}^2, (1,0), f, (\delta_a)_{a \in A} \rangle$$

$$\delta_a(x, y) = (2x, 2y)$$

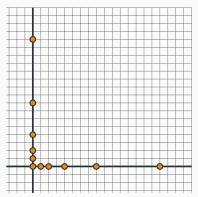
$$\delta_b(x, y) = (y, x)$$

$$\delta_c(x, y) = (0, 0)$$

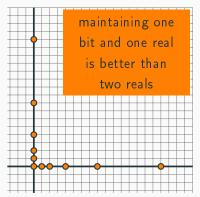
$$f(x, y) = x$$

 $abbaac \mapsto 0$

The "reachable" vectors are on the "union" of two one-dimensional subspaces.



The "reachable" vectors are on the "union" of two one-dimensional subspaces.



Hybrid set-vector automata "have"

- a finite set of control states that evolve like DFAs
- a finite vector space for each control state

Question.

What is a suitable automata model so that minimisation is possible and we retrieve this "hybrid" behaviour?

Automata as functors

Automata in Categories: what we already knew

Automata are both algebras for a functor + final map and coalgebras for a functor + initial map

Automata in Categories: what we already knew

Automata are both algebras for a functor + final map and coalgebras for a functor + initial map

Minimization can be explained via the duality between the algebraic-coalgebraic view (e.g. Brzozowski's algorithm) Automata are both algebras for a functor + final map and coalgebras for a functor + initial map

Minimization can be explained via the duality between the algebraic-coalgebraic view (e.g. Brzozowski's algorithm)

The coalgebraic view brings its own advantages: (e.g. checking NFA equivalences using up-to techniques for bisimulations)

Thomas Colcombet "Algèbres? Co-algèbres? Mais ils ne sont ni l'un ni l'autre !"

An automaton processes an input, respecting its structure (word, tree, infinite word or tree, trace, ...)

> outputs a quantity in some universe of output values (Boolean values, probabilities, vector space, words, ...)

Thomas Colcombet "Algèbres? Co-algèbres? Mais ils ne sont ni l'un ni l'autre !"

An automaton processes an input, respecting its structure (word, tree, infinite word or tree, trace, ...)

> outputs a quantity in some universe of output values (Boolean values, probabilities, vector space, words, ...)

Automata are functors!!!

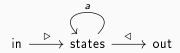
	a	
deterministic automata	$1 \stackrel{\scriptscriptstyle{\mathcal{M}}}{\longrightarrow} Q \stackrel{\scriptstyle{\mathcal{I}}}{\longrightarrow} 2$	in Set
	a	
non-deterministic automata	$1 \stackrel{ ightarrow}{\longrightarrow} Q \stackrel{ ightarrow}{\longrightarrow} 1$	in Rel
	a	
weighted automata	$S \xrightarrow{\simeq} Q \xrightarrow{\sim} S$	in Mod _S
	a	
Subseq. transducers	$1 \stackrel{\searrow}{\longrightarrow} Q \stackrel{\nearrow}{\longrightarrow} 1$	in Kl (\mathcal{T})

	a	
deterministic automata	$1 \longrightarrow Q \longrightarrow 2$	in Set
	a	
non-deterministic automata	$1 \longrightarrow Q \longrightarrow 1$	in Rel
weighted automata	$S \xrightarrow{a} Q \xrightarrow{a} S$	in Mod <i>s</i>
		in mous
	\sum	
Subseq. transducers	$1 \longrightarrow Q \longrightarrow 1$	in $KI(\mathcal{T})$

We see a pattern emerging!

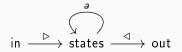
$$\mathcal{A}: \mathcal{I} \to \mathcal{C} ,$$

where the input category \mathcal{I} is freely generated by



$$\mathcal{A}: \mathcal{I} \to \mathcal{C} ,$$

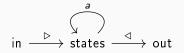
where the input category \mathcal{I} is freely generated by



deterministic automata $\mathcal{A}: \mathcal{I} \rightarrow Set$ in $\mapsto 1$ and out $\mapsto 2$

$$\mathcal{A}: \mathcal{I} \to \mathcal{C} ,$$

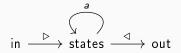
where the input category $\mathcal I$ is freely generated by



deterministic automata $\mathcal{A}: \mathcal{I} \to \text{Set}$ in $\mapsto 1$ and out $\mapsto 2$ non-deterministic automata $\mathcal{A}: \mathcal{I} \to \text{Rel}$ in $\mapsto 1$ and out $\mapsto 1$

$$\mathcal{A}: \mathcal{I} \to \mathcal{C} ,$$

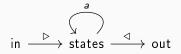
where the input category \mathcal{I} is freely generated by



deterministic automata $\mathcal{A}: \mathcal{I} \rightarrow Set$ in $\mapsto 1$ and out $\mapsto 2$ non-deterministic automata $\mathcal{A}: \mathcal{I} \rightarrow Rel$ in $\mapsto 1$ and out $\mapsto 1$ weighted automata $\mathcal{A}: \mathcal{I} \rightarrow Mod_S$ in $\mapsto S$ and out $\mapsto S$

$$\mathcal{A}: \mathcal{I} \to \mathcal{C} ,$$

where the input category $\mathcal I$ is freely generated by



 $\begin{array}{lll} \mbox{deterministic automata} & \mathcal{A} \colon \mathcal{I} \to \mbox{Set} & \mbox{in } \mapsto \mbox{1 and } \mbox{out } \mapsto \mbox{2} \\ \mbox{non-deterministic automata} & \mathcal{A} \colon \mathcal{I} \to \mbox{Rel} & \mbox{in } \mapsto \mbox{1 and } \mbox{out } \mapsto \mbox{1} \\ \mbox{weighted automata} & \mathcal{A} \colon \mathcal{I} \to \mbox{Mod}_S & \mbox{in } \mapsto \mbox{S and } \mbox{out } \mapsto \mbox{S} \\ \mbox{subseq. transducers} & \mathcal{A} \colon \mathcal{I} \to \mbox{Kl}(\mathcal{T}) & \mbox{in } \mapsto \mbox{1 and } \mbox{out } \mapsto \mbox{1} \end{array}$

Languages are functors

 $\mathcal{L}: \mathcal{O} \to \mathcal{C} ,$

where \mathcal{O} is the full subcategory of \mathcal{I} on objects in and out

in $\xrightarrow{\triangleright w \triangleleft} : w \in A^*$ out

Languages are functors

 $\mathcal{L}: \mathcal{O} \to \mathcal{C} ,$

where \mathcal{O} is the full subcategory of \mathcal{I} on objects in and out

in $\xrightarrow{\triangleright w \triangleleft : w \in A^*}$ out

A language $L \subseteq A^*$ can be modelled as a functor $\mathcal{L}_{Set}: \mathcal{O} \to Set$ so that $\mathcal{L}_{Set}(in) = 1$ and $\mathcal{L}_{Set}(out) = 2$, For all $w \in A^*$ we have $\mathcal{L}_{Set}(\rhd w \triangleleft): 1 \to 2$ in Set. Languages are functors

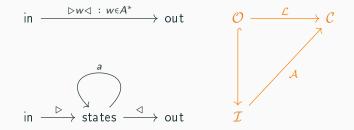
 $\mathcal{L}:\mathcal{O}\to\mathcal{C}\ ,$

where \mathcal{O} is the full subcategory of \mathcal{I} on objects in and out

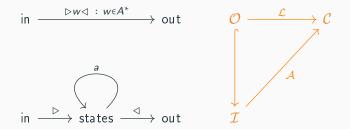
in $\xrightarrow{\triangleright w \triangleleft : w \in A^*}$ out

A language $L \subseteq A^*$ can be modelled as a functor $\mathcal{L}_{\mathsf{Set}}: \mathcal{O} \to \mathsf{Set}$ so that $\mathcal{L}_{\mathsf{Set}}(\mathsf{in}) = 1$ and $\mathcal{L}_{\mathsf{Set}}(\mathsf{out}) = 2$, For all $w \in A^*$ we have $\mathcal{L}_{\mathsf{Set}}(\rhd w \triangleleft): 1 \to 2$ in Set.

Alternatively, $L \subseteq A^*$ can be modelled as a functor $\mathcal{L}_{\mathsf{Rel}}: \mathcal{O} \to \mathsf{Rel}$ so that $\mathcal{L}_{\mathsf{Rel}}(\mathsf{in}) = 1$ and $\mathcal{L}_{\mathsf{Rel}}(\mathsf{out}) = 1$. For all $w \in A^*$ we have $\mathcal{L}_{\mathsf{Rel}}(\rhd w \lhd): 1 \to 1$ in Rel. An automaton $\mathcal A$ accepts a language $\mathcal L$ when the next diagram commutes



An automaton $\mathcal A$ accepts a language $\mathcal L$ when the next diagram commutes

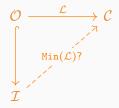


For every language $\mathcal{L}: \mathcal{O} \to \mathcal{C}$ we have a category Auto_L of automata accepting \mathcal{L} .

Automata as functors: minimization

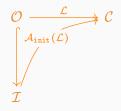
Minimial Automaton $\texttt{Min}(\mathcal{L})$ for a Language

When does a 'minimal' automaton accepting a language $\mathcal L$ exist?



Minimial Automaton $Min(\mathcal{L})$ for a Language

When does a 'minimal' automaton accepting a language $\mathcal L$ exist?

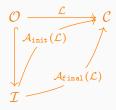


If the category of automata accepting $\boldsymbol{\mathcal{L}}$ has

• an initial object $\mathcal{A}_{\text{init}}(\mathcal{L})$,

Minimial Automaton $Min(\mathcal{L})$ for a Language

When does a 'minimal' automaton accepting a language ${\cal L}$ exist?

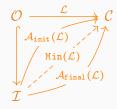


If the category of automata accepting $\boldsymbol{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})$,
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})$, and,

Minimial Automaton $Min(\mathcal{L})$ for a Language

When does a 'minimal' automaton accepting a language ${\cal L}$ exist?



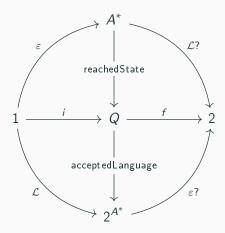
If the category of automata accepting $\boldsymbol{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})$,
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})$, and,
- a factorization system

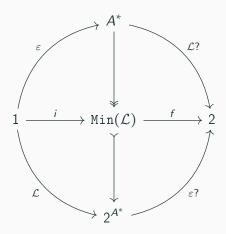
then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

$$\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \operatorname{Min}(\mathcal{L}) \rightarrowtail \mathcal{A}_{\text{final}}(\mathcal{L}).$$

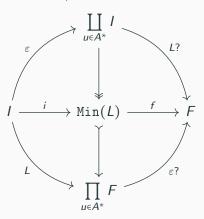
deterministic automata, i.e. (Set, 1, 2)-automata accepting a (Set, 1, 2)-language



deterministic automata, i.e. (Set, 1, 2)-automata accepting a (Set, 1, 2)-language



If the output category C has countable powers and copowers, and, and epi-mono factorisation system, then the minimial automaton for L is computed as follows



Thus far we have reinvented the wheel ...

Thus far we have reinvented the wheel ...

However, the wheel was a pretty awesome invention!

What if the output category is not nice?

Subsequential transducers

the output category has copowers, factorization system, but does not have products.

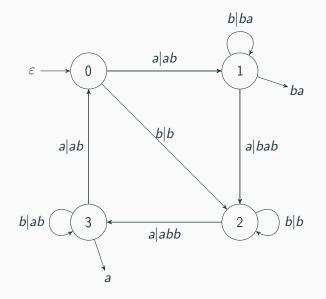
Subsequential transducers

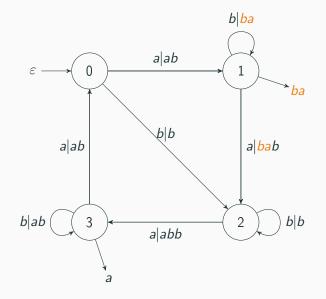
the output category has copowers, factorization system, but does not have products.

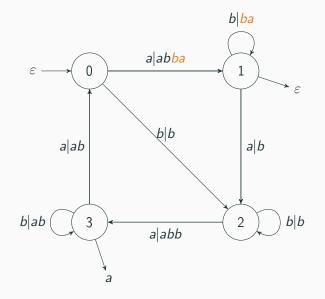
Hybrid set-vector automata

a costum-made output category that has all powers and copowers, but where the factorisation system is not "nice" enough to give a meaningful notion of minimization.

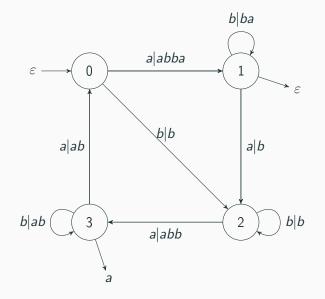
Subsequential transducers à la Choffrut



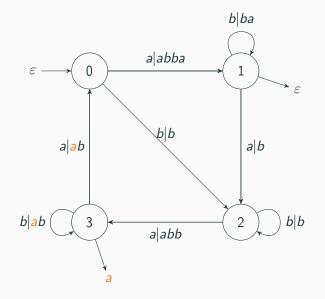




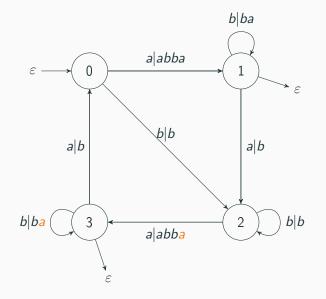
20/31

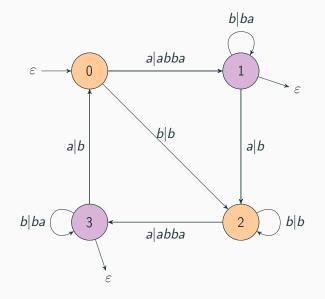


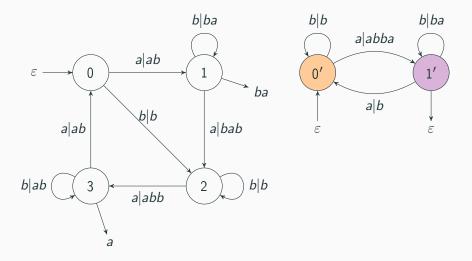
20/31



20/31







Subsequential transducers as functors

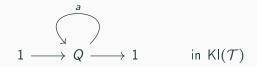
A subsequential transducers with output alphabet ${\cal B}$ is essentially a functor

 $\mathcal{A}{:}\,\mathcal{I} \to \mathsf{Kl}(\mathcal{T})$

for the monad $\mathcal{T}{:}\mathsf{Set}\to\mathsf{Set}$ defined by

$$\mathcal{T}(X) = B^* \times X + 1.$$

That is, we have the data



Subsequential transducers as functors

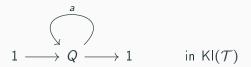
A subsequential transducers with output alphabet ${\cal B}$ is essentially a functor

 $\mathcal{A}{:}\,\mathcal{I} \to \mathsf{Kl}(\mathcal{T})$

for the monad $\mathcal{T}{:}\mathsf{Set}\to\mathsf{Set}$ defined by

$$\mathcal{T}(X) = B^* \times X + 1.$$

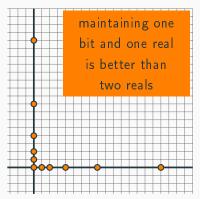
That is, we have the data



The category KI(\mathcal{T}) does not have powers or products!! This is why we cannot just use coalgebras for $SX = (1 + B^* \times X)^{A^*} \times (1 + B^*)$, see [Hansen, 2010] "Glueings" of vector spaces

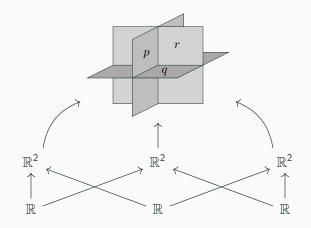
Let's backtrack to the "hybrid set-vector" automaton

The "reachable" vectors are on the "union" of two one-dimensional subspaces.



What is the good category to accommodate the new model?

An example of "gluings" of vector spaces i.e. a mono-colimit in Vec



A diagram $F: \mathcal{D} \to \mathcal{C}$ is called a mono-colimit if it has a mono-cocone in \mathcal{C} , that is, a cocone where all the injections are monos.

Definition

We define Glue(C) as the free completion of C under mono-colimits.

A diagram $F: \mathcal{D} \to \mathcal{C}$ is called a mono-colimit if it has a mono-cocone in \mathcal{C} , that is, a cocone where all the injections are monos.

Definition

We define Glue(C) as the free completion of C under mono-colimits.

Lemma

The category Glue(C) is complete and cocomplete whenever C is.

In particular, Glue(Vec) has all the required properties so that minimisation works smoothly.

We are interested in effective minimal automata!

deterministic finite automataSet
finite-dim.finite-dim. vector automataVec
fineffective hybrid-set-vector automataGlue
fin (Vec
fin)

where $\mathsf{Glue}_{\mathsf{fin}}(\mathsf{Vec}_{\mathsf{fin}})$ is the free cocompletion of $\mathsf{Vec}_{\mathsf{fin}}$ under finite mono-colimits.

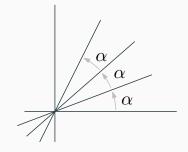
Example

Consider the weighted language $L: A^* \to \mathbb{R}$ given by

 $L(u) = \cos(\alpha |u|)$

for some α which is not a rational multiple of $\pi.$

The minimal automaton in Glue(Vec) is a countable colimit of one-dimensional spaces.



It seems we have "broken" the minimisation wheel ...

It seems we have "broken" the minimisation wheel ...

The fix: a factorisation through system

Conclusions

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of the hybrid set-vector automata model.

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of the hybrid set-vector automata model.

Quite a few questions remain to be answered...

Can we characterise the presheaves that are mono-colimits of representables? (some partial results, e.g. we proved that they preserve equalisers, but that is not sufficient)

Our contribution: a new automata model!

The category-theoretic perspective helps with the accurate description of the hybrid set-vector automata model.

Quite a few questions remain to be answered...

Can we characterise the presheaves that are mono-colimits of representables? (some partial results, e.g. we proved that they preserve equalisers, but that is not sufficient)

How do we effectively minimise hybrid-set-vector automata?

Adjunctions between output categories lift to adjunctions for "adjoint transpose" languages. Unifying explanation for

- determinization of NFAs
- generalised powerset construction
- reversing automata

What other uses can we find for the "minimization wheel"?

- syntactic monoids, algebras
- minimization by duality
- syntactic spaces with internal monoids

[Gehrke, P., Reggio, ICALP'16, LICS'17]

- [Colcombet, P., ACM SIGLOG april 2017] Automata and minimization.
- [Colcombet, P., MFCS 2017] Automata in the Category of Glued Vector Spaces
- Colcombet, P., CALCO 2017 Automata Minimization: a Functorial Approach